

ETA-Danmark A/S Göteborg Plads 1 DK-2150 Nordhavn Tel. +45 72 24 59 00 Internet www.etadanmark.dk Authorised and notified according to Article 29 of the Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011

European Technical Assessment ETA-20/0943 of 2021/02/16

General Part

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011: ETA-Danmark A/S

Trade name of the construction product:

atc 2815, atc 3817, atc 4025, atc 4930, atc 4022, atc 4022P, atc 5030, atc 5030P, atc 5234

Product family to which the above construction product belongs:

Anchor channels

Manufacturer:

ancotech GmbH Spezialbewehrungen – Edelstahlteile Am Westhover Berg 30 DE-51149 Köln Telephone: +49 2203 599280 www.ancotech.de

Manufacturing plant:

ancotech GmbH Spezialbewehrungen – Edelstahlteile Am Westhover Berg 30 DE-51149 Köln Telephone: +49 2203 599280

www.ancotech.de

This European Technical Assessment contains:

25 pages including 17 annexes which form an integral part of the document

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of:

European Assessment Document (EAD) 330008-03-0601: "Anchor Channels" version February 2019

Note: This ETA is a corrigenda prepared on 2021-06-17

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

1 Technical description of product

The ancotech atc anchor channels are made of hot-dipped galvanized steel and stainless steel A4.

A fixture is connected to the anchor channel by locking channel bolts (M8, M10, M12, M16 and M20, each in materials 4.6, 8.8, A4-50 and A4-70) on the channel bolt head (hammer- or hook head bolt) with appropriate hexagon nuts and washers.

The product description and further elaboration of the intended use is given in Annex A and B1.

2 Specification of the intended use(s) in accordance with the applicable European Assessment Document (hereinafter EAD)

The anchor channel is intended to be used in cracked and uncracked concrete. The anchor channel is embedded surface-flush in the concrete and shall be secured at their position during installation such that no movement of the channel will occur during the time of laying the reinforcement and placing and compacting the concrete.

The performances given in Section 3 are only valid if the anchor channel is used in compliance with the specifications and conditions given in Annex A and B1.

The provisions made in this European Technical Assessment are based on an assumed intended working life of the anchor channels of 50 years, provided the manufacturers conditions for the packaging, transport, storage, installation, use, maintenance, and repair are met.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

Performance of the product and references to the methods used for its assessment

Characteristic	Assessme	ent of	charac	cterist	ic					
3.1 Mechanical resistance and stability (BV	VR1)									
Characteristic resistance under static and quas	i-static ten	sion lo	oading	5						
Resistance to steel failure of anchors $N_{Rk,s,a}$ [kN]		atc 2815	atc 3817	atc 4022	atc 4022 P	atc 4025	atc 4930	atc 5030	atc 5030 P	atc 5234
IV Rk, s,a [KIN]	Stainless steel	16,7	29,7	29,7	46,3	29,7	46,3	46,3	66,7	66,7
	Hot-dip galvanized	12,2	21,6	24,6	38,5	21,6	33,8	38,5	55,4	55,4
Resistance to steel failure of the connection between anchors and channel		atc 2815	atc 3817	atc 4022	atc 4022 P	atc 4025	atc 4930	atc 5030	atc 5030 P	atc 5234
$N_{Rk,s,c}$ [kN]	Stainless steel	12,3	32,6	29,4	33,7	31,0	43,6	49,2	47,2	72,5
	Hot-dip galvanized	10,0	20,4	15,1	26,7	22,2	33,5	33,4	32,2	40,0
Posistance to steel feilure of abound line and		atc 2815	atc 3817	atc 4022	atc 4022 P	atc 4025	atc 4930	atc 5030	atc 5030 P	atc 5234
Resistance to steel failure of channel lips and subsequently pull-out of channel bolt $N^0_{Rk,s,l}[kN]$	Stainless steel N ⁰ _{Rk,s,l}	12,3	32,6	29,4	33,7	31,0	43,6	49,2	47,2	72,5
$s_{l,N}$ [mm]	$s_{l,N}$	56	76	80	80	80	98	100	100	104
	Hot-dip galvanized $N^0_{Rk,s,l}$	10,0	20,4	15,1	26,7	22,2	33,5	33,4	32,2	40,0
	$s_{l,N}$	56	76	80	80	80	98	100	100	104
Resistance to steel failure of channel bolt $N_{Rk,s}$ [kN]	See Anne	x C2								
		atc 2815	atc 3817	atc 4022	atc 4022	atc 4025	atc 4930	atc 5030	atc 5030	atc 5234
Resistance to steel failure by exceeding the bending strength of the channel	Stainless	324	593	1580	P 1580	1071	1708	3184	P 3184	3373
$M_{Rk,s,flex}$ [Nm]	Steel Hot-dip galvanized	317	580	1406	1406	1099	1673	2830	2830	3373
	$T_{inst,g}$	atc 2815	atc 3817	atc 4022	atc 4022 P	atc 4025	atc 4930	atc 5030	atc 5030 P	atc 5234
	М6	3			1				1	
Maximum installation torque moment to avoid	M8	8								
damage during installation	M10	13	15	15	15	15	15	15	15	15
$T_{inst,g}$ [Nm]	M12 M16	15	25 40	25 45	25 45	25 45	25 60	25 60	25 60	25 60
$T_{inst,s}$ [Nm]	M20		40	+3	43	43	75	75	75	120
		4.6		A4-50		A4-70		8.8	1	
	T _{inst,s}	3		8					1	
	M8	8		8		15		20	1	
	M10	15		15		30		40		
	M12	25		25		50		70	_	
	M16	65 130		120		130 250	_	360	-	
	M20	130		120		23V		200		

See A	Anne	x C3								
		_								
		atc	atc	atc	atc	atc	atc	atc	atc	atc
		2815	3817	4022	4022	4025	4930	5030	5030	5234
hef		48	78,5	83,5	90,5	86,5	97	97	106	158
 	N	7,30	7,86	7,93	8,03	7,97	8,11	8,11	8,22	8,73
 _ _ _ _ _ _		10,42	11,21	11,32	11,46	11,38	11,58	11,58	11,73	12,45
S _{min} S				32						
1		atc 2815	atc 3817	atc 4022	atc 4022 P	atc 4025	atc 4930	atc 5030	atc 5030 P	atc 5234
Scr,s	р	96	157	167	181	173	194	194	212	316
Ccr,s	p	144	235,5	250,5	271,5	259,5	291	291	318	474
f		atc 2815	atc 3817	atc 4022	atc 4022 P	atc 4025	atc 4930	atc 5030	atc 5030	atc 5234
$A_{\rm h}$		84,8	150,8	150,8	150,8	235,6	150,8	235,6	339,3	339,3
l l	Annex	x C5								
Π	1		1					1	1	1
1 1		atc 2815		atc 4022		atc 4025	atc 4930	atc 5030		atc 5234
	_				P				P	
Stain	less	20,8	29,0	58,5	44,0	50,3	79,0	92,2	65,5	76,8
1 1	-	16,0	27,1	46,2	40,5	43,1	50,9	73,8	78,7	90,5
,	erfori	mance	assess	sed						
No performance assessed										
		atc 2815	atc 3817	atc 4022	atc 4022 P	atc 4025	atc 4930	atc 5030	atc 5030 P	atc 5234
Stainl steel	less	10,0	17,8	17,8	17,8	27,8	17,8	27,8	40,0	40,0
	lip		1					l	 	t
	Kuer Kuer Seria S Cmin S Cmin S Cmin S Cor,s Cor,s Cor,s Cor,s Cor,s No p No p No p	kcr,N kucr,N Smin see ar cmin & hmin Scr,sp Ccr,sp f Ah See Annex See Annex Stainless steel Hot-dip galvanized	Ref.	Rec.,N 7,30 7,86	Rer,N 7,30 7,86 7,93	Rer,N 7,30 7,86 7,93 8,03 Ruer,N 10,42 11,21 11,32 11,46 T Smin see annex A6 Cmin & hmin see annex B2 Ser,sp 96 157 167 181 Cer,sp 144 235,5 250,5 271,5 T Cer,sp 144 235,5 250,5 271,5 T Cer,sp 144 235,5 250,8 150,8	h _{ef}	h _{cf}	het	h _{ef}

Characteristic	Assessme	ent of	charac	cterist	ic					
Resistance to steel failure of connection between anchor and channel		atc 2815	atc 3817	atc 4022	atc 4022 P	atc 4025	atc 4930	atc 5030	atc 503 0P	atc 5234
$V_{Rk,s,c,x}$ [kN]	Stainless steel	7,3	19,5	17,6	20,2	18,6	26,1	29,5	28,3	43,5
	Hot-dip galvanized	6,0	12,2	9,0	16,0	13,3	20,1	20,0	19,3	24,0
Resistance to concrete pry-out failure k_8		atc 2815	atc 3817	atc 4022	atc 4022 P	atc 4025	atc 4930	atc 5030	atc 5030 P	atc 5234
	k _s	1,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0
Resistance to concrete edge failure $[k_{cr,V}; k_{ucr,V}]$	The factor	rs k er,v	y = 4,5	and k	_{ucr,V} =	6,3 ar	e acce	pted.		
Characteristic resistance under combined static	c and quas	i-stati	c tens	ion an	d shea	ır load	ding			
Resistance to steel failure of the anchor channel $[k_{13}; k_{14}]$	or channel $k13 = k14 = 1,0$									
Characteristic resistance under fatigue tension	loading									
Fatigue resistance to steel failure of the whole system (continuous or tri-linear function) $[\Delta N_{Rk,s,0,n} \ (n=1 \text{ to } n=\infty)]$	No performance assessed									
Fatigue limit resistance to steel failure of the whole system $[\Delta N_{Rk,s,0,\infty}]$	No performance assessed									
Fatigue resistance to concrete related failure (exponential function) $[\Delta N_{Rk,c,0,n}; \Delta N_{Rk,p,0,n}; (n = 1 \text{ to } n = \infty)]$	No perfor	mance	asses	sed						
Fatigue limit resistance to concrete related failure $[\Delta N_{Rk,c,0,\infty}; \Delta N_{Rk,p,0,\infty}]$	No perfor	mance	asses	sed						
Displacements $[\delta_{N0},\delta_{N\infty},\delta_{V,y,0},\delta_{V,y,\infty},\delta_{V,x,0},\delta_{V,x,\infty}]$	No perfor	mance	asses	sed						
Durability	No perfor	mance	asses	sed						
3.2 Safety in case of fire (BWR2)										
Reaction to fire	The anchor channels are made from steel classified as class A1 in accordance with EN 13501-1 and Commission Delegated Regulation 2016/364.									
Resistance to fire $N_{Rk,s,fi}$ $V_{Rk,s,fi}$	No performance assessed									

3.3 Methods of verification

The product is fully covered by EAD 330008-03-0601, February 2019. According to the Regulation (EU) No 305/2011.

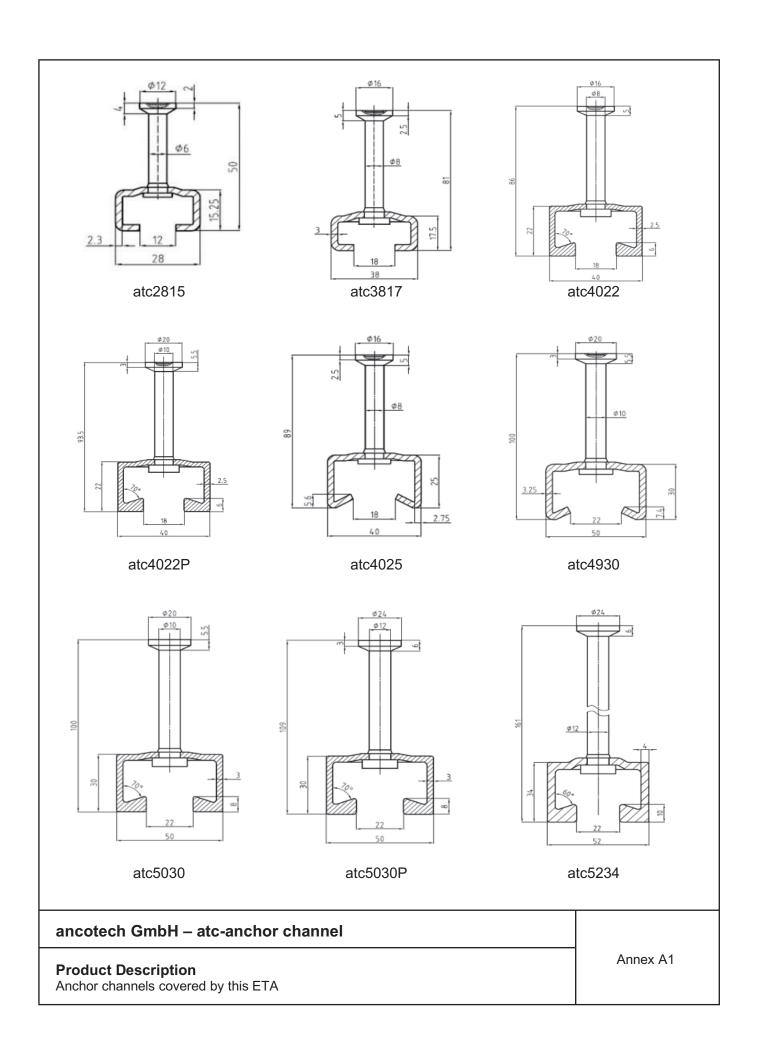
3.4 General aspects related to the fitness for use of the product

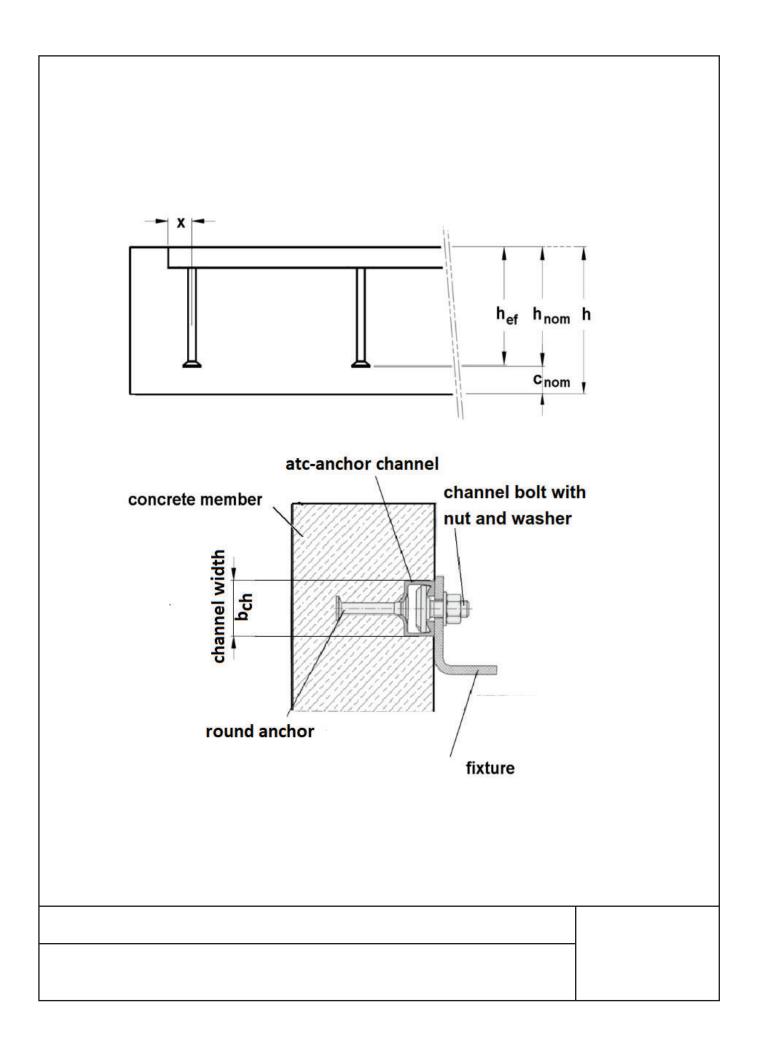
The European Technical Assessment is issued for the product based on agreed data/information, deposited with ETA-Danmark, which identifies the product that has been assessed and judged. Changes to the product or production process, which could result in this deposited data/information being incorrect, should be notified to ETA-Danmark before the changes are introduced. ETA-Danmark will decide if such changes affect the ETA and consequently the validity of the CE marking based on the ETA and if so whether further assessment or alterations to the ETA, shall be necessary.

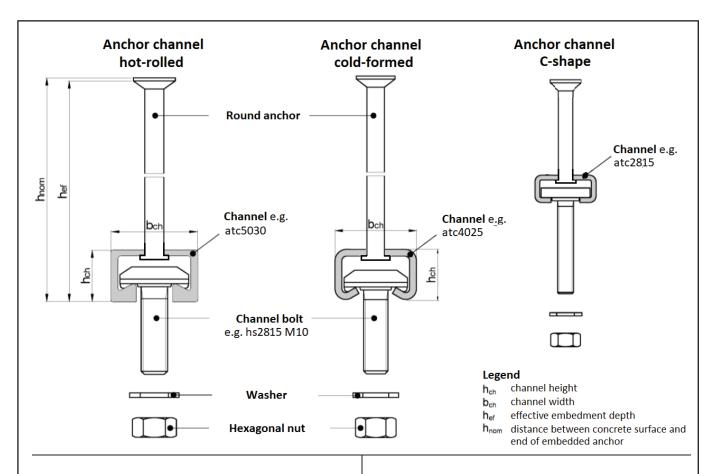
The ancotech atc anchor channels are manufactured in accordance with the provisions of this European Technical Assessment using the manufacturing processes as identified in the inspection of the plant by the notified inspection body and laid down in the technical documentation.

4 Assessment and verification of constancy of performance (AVCP) (hereinafter AVCP) system applied, with reference to its legal base.

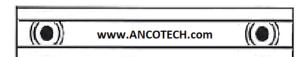
4.1 AVCP system


According to the decision 2000/273/EC of the European Commission, as amended, the system(s) of assessment and verification of constancy of performance is system 1 (see Annex V to Regulation (EU) No 305/2011).


5 Technical details necessary for the implementation of the AVCP system, as foreseen in the applicable EAD


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at ETA-Danmark prior to CE marking

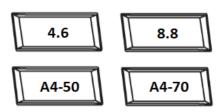
Issued in Copenhagen on 2021-02-16 by


Thomas Bruun Managing Director, ETA-Danmark

Marking of atc-anchor channels at channel back

Material:

Steel:


Channel: 1.0036 / 1.0507

Anchor: 1.7027

Stainless steel:

Channel: 1.4401 / 1.4404 **Anchor:** 1.4401 / 1.4404

Marking of atc-channel bolts at channel bolt head

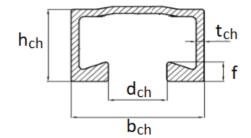
Strength classes of channel bolts:

Steel: 4.6, 8.8

Stainless steel: A4-50, A4-70

ancotech GmbH - atc-anchor channel

Product Description


Marking and Materials

Annex A3

Tabl	e 1: Materials and	intended use								
1	2	3	4	5	6					
			Inten	ded use						
		Dry internal conditions	Internal conditions with usual humidity	Medium corrosion exposure	High corrosion exposure					
Item No	Specification	Structures subject to dry internal conditions (e.g. accommodations, bureaus, schools, hospitals, shops, exceptional internal conditions with usual humidity acc. column 4)	Structures subject to internal conditions with usual humidity (e.g. kitchen, bath and laundry in residential buildings, exceptional permanently damp conditions and application under water)	Structures subject to external atmospheric exposure (including industrial and marine environment) or exposure in permanently damp internal conditions, if no particular aggressive conditions (e.g. permanent, alternating immersion in seawater etc. acc. column 6) exist.	Structures subject to exposure in particular aggressive conditions (e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools) or atmosphere with chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)					
		Materials								
1	Channel Profile	Steel 1.0036/ 1.0507 EN 10025:2004 hot-dip galv.≥ 50 μm³) Stainless steel 1.4301 EN 10088:2005	Steel 1.0036/ 1.0507 EN 10025:2004 hot-dip galv. ≥ 50 μm ³⁾	Stainless steel 1.4401/1.4404 EN 10088:2014	Stainless steel 1.4401/1.4404					
2	Anchor	Steel 1.7027 EN 10263:2017 hot-dip galv.≥ 50 μm²) Stainless steel 1.4301 EN 10088:2014	Steel 1.7027 EN 10263:2017 hot-dip galv. ≥ 50 μm ²⁾	Stainless steel 1.4401/1.4404 EN 10088:2014	EN 10088:2014					
3	Channel bolt thread and shaft EN ISO 4018:2011	Steel, strength grade 8.8 EN ISO 898-1:2013 electroplated ≥ 5 µm¹)	Steel, strength grade 8.8 EN ISO 898-1:2013 hot-dip galv. ≥ 50 μm ²⁾	Stainless steel 1.4401/1.4404 EN ISO 3506-1:2009	Stainless steel 1.4401/1.4404 EN ISO 3506-1:2009					
4	Washer, EN ISO 7089:2000, EN ISO 7093-1:2000 production class A, 200HV	Steel EN 10025:2004 electroplated ≥ 5 µm ¹⁾	Steel EN 10025:2004 hot-dip galv. ≥ 50 µm ²⁾	Stainless steel 1.4401/1.4404 EN 10088:2014	Stainless steel 1.4401/1.4404 EN 10088:2014					
5	Hexagonal nuts EN ISO 4032:2012	Steel, strength grade 8 EN ISO 898-2:2012 electroplated ≥ 5 µm¹)	2012 EN ISO 898-2:2012 Stainless sto		Stainless steel 1.4401/1.4404 EN ISO 3506-2:2009					

- 1) Electroplated acc. EN ISO 4042:2018
- 2) Hot-dip galvanized on the basis of EN ISO 1461:2009, but coating thickness ≥ 50 µm

ancotech GmbH – atc-anchor channel	
Product Description Materials and intended use	Annex A4

Table 2: Geometrical profile properties

			<u> </u>			
Anchor			Dimer	nsions		
channel	b _{ch}	h _{ch}	tch	d _{ch}	f	l y
Chamilei			[mm]			[mm ⁴]
atc2815	28	15.25	2.3	12	2.3	4060
atc3817	38	17.5	3	18	3	8547
atc4022	40	22	2.5	18	6	20029
atc4022P	40	22	2.5	18	6	20029
atc4025	40	25	2.75	18	5.6	20570
atc4930	50	30	3.25	22	7.4	39683
atc5030	50	30	3	22	8	41827
atc5030P	50	30	3	22	8	41827
atc5234	52	34	4	22	10	72079

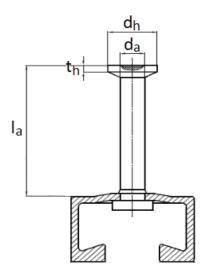
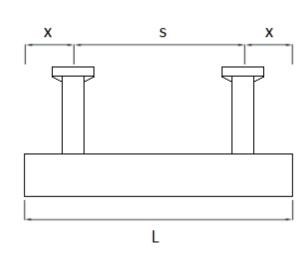


Table 3: Types of round anchors

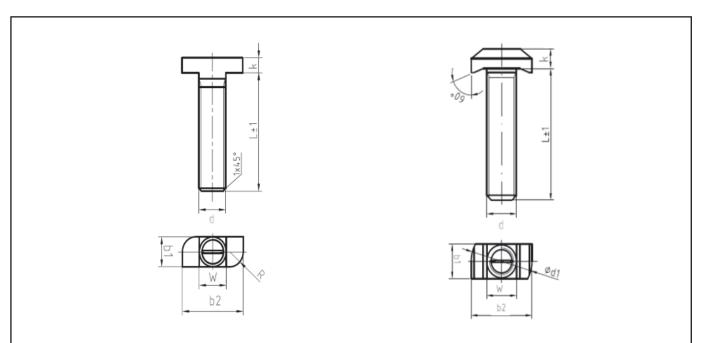

Table 5. Types of Tourid afforms												
Anaban		[Dimensio	ns								
Anchor channel	da	d h	th	la	Ah							
Chamilei			[mm]									
atc2815	6	12	2	50	84.8							
atc3817	8	16	2.5	81	150.8							
atc4022	8	8 16 2.5		86	150.8							
atc4022P	P 10 20 3		3	93.5	235.6							
atc4025	8	16	2.5	89	150.8							
atc4930	10	20	3	100	235.6							
atc5030	10	20	3	100	235.6							
atc5030P	12	24	3	109	339.3							
atc5234	12	24	3	161	339.3							

ancotech	GmbH	– atc-anc	hor c	hannel
----------	------	-----------	-------	--------

Product Description

Profile dimensions / Types of anchors

Annex A5


Table 4: Anchor Positioning

- and the second												
Anchor	2	chor cing	End spacing	Min. channel length								
channel	Smin	Smin Smax		min I								
		[mm]										
atc2815	50	200	25	100								
atc3817	50	200	25	100								
atc4022												
atc4022P												
atc4025	100	250	25	150								
atc4930												
atc5030												
atc5030P	030P 400 050		35	150								
atc5234	100	250	33	150								

ancotech	GmbH –	atc-anchor	channel

Product DescriptionAnchor positioning

Annex A6

Table 5: Dimension of the channel bolts

Channel bolt		l bolt		hs2	hs2815 hs3817					ŀ	ns4022	2	hs5030			
And	chor c	hannel	M6	M8	M10	M12	M10	M12	M16	M10	M12	M16	M10	M12	M16	M20
Ø	5	[mm]	6	8	10	12	10	12	16	10	12	16	10	12	16	20
þ,	b1 [m		10.1	10.1 10.1 10.1 10.8			13	13	16.4	14	14	17.2	13	13	17	21
b	2	[mm]	22.7 22.7 22.7 22.7			30.7	30.7	30.7	32.5	32.5	32.5	41	41	41	41	
k	[[mm]	4	4 4 5.7 5.7			6	7.2	7.2	7	7	8.7	10	10	11	12.3
Leng	gth I	[mm]	15 - 20 - 15 - 20 - 60 150 200 200			20 - 175	20 - 200	20 - 200	20 - 150	20 - 250	30 - 300	25 - 50	30 - 200	30 - 300	35 - 300	
4.6	fuk	[N/mm²]														
4.0	f _{yk}	[N/mm²]							24	40						
8.8	fuk	[N/mm²]							80	00						
0.0	f _{yk}	[N/mm²]							64	40						
A 4 50	fuk	[N/mm²]							50	00						
A4-50	f _{yk}	[N/mm²]		210												
A4-70	f _{uk}	[N/mm²]							70	00						
A4-70	f _{yk}	[N/mm²]							4	50						

ancotech GmbH – atc-anchor channel	
Product Description Channel bolt dimensions and strength grade	Annex A6

Specifications of intended use

Anchor channel and channel bolts subject to:

 Static and quasi-static loads in tension and shear perpendicular to the longitudinal of axis of the channel

Substrate:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000
- Strength classes C20/25 to C90/105 according to EN 206-1:2000
- Cracked or uncracked concrete

Use conditions (Environmental conditions):

• Structures subject to environmental conditions acc. Annex A3

Design:

- Anchor channel are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor channel and channel bolts are indicated on the design drawings (e.g. position of the anchor channel relative to the reinforcement or to the supports)
- For static and quasi-static loading as well as fire exposure the anchor channels are designed in accordance with EOTA TR 047 "Calculation Method for the performance of Anchor Channels", March 2018 or EN 1992-4:2018.
- For fatigue loading the anchor channels are designed in accordance with EOTA TR 050 "Calculation Method for the Performance of Anchor channels under Fatigue Loading", November 2015.
- The characteristic resistances are calculated with the minimum effective embedment depth.

Installation:

- The installation of anchor channels is carried out by appropriately qualified personnel under the supervision of the person responsible for the technical matters on site.
- Use of the anchor channels only as supplied by the manufacturer -without any manipulations, repositioning or exchanging of the channel components.
- Cutting of anchor channels is allowed only if pieces according Annex A5, Table 4 are generated including end spacing and minimum channel length and only to be used in dry internal conditions.
- Installation in accordance with the manufacturer's specifications given in Annex B4.
- The anchor channels are fixed on the formwork or reinforcement such that no movement of the channels will occur during the time of laying the reinforcement and of placing and compacting the concrete.
- The concrete under the head of the anchors are properly compacted. The channels are protected from penetration of concrete into the internal space of the channels.
- Washer may be chosen according to Annex A3 and provided separately by the user.
- Orientating the channel bolts rectangular to the channel axis.
- The setting torques given in Annex B3 shall be applied and shall not be exceeded.

ancotech GmbH – atc-anchor channel	
Intended use Specifications	Annex B1

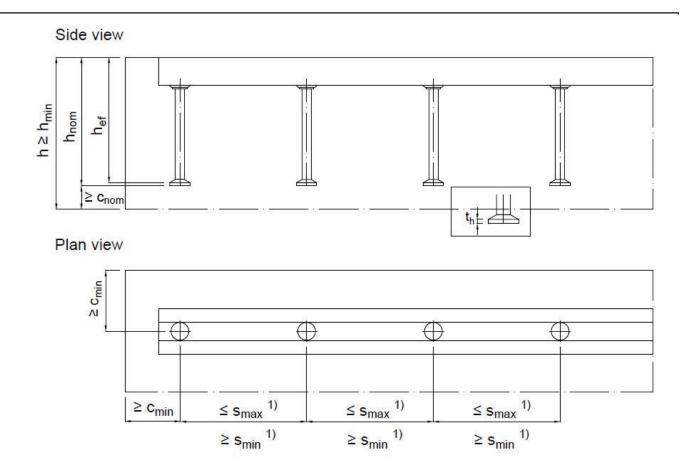


Table 6: Minimum effective embedment depth, edge distance and member thickness of the anchor channel

Anchor Channel		atc 2815	atc 3817	atc 4022	atc 4022P	atc 4025	atc 4930	atc 5030	atc 5030P	atc 5234	
Min. effective embedment depth	min h _{ef}		48	78.5	83.5	90.5	86.5	97	97	106	158
Min edge distance	Cmin	[mm]	40	50	50	50	50	75	75	75	100
Min. member thickness	h _{min} ²⁾		80	111	116	123.5	120	130	130	139	191

- 1) s_{min} , s_{max} acc. to Table 4, Annex A5
- 2) $h_{min} \ge I_a + h_{ch} + c_{nom}$; c_{nom} acc. to EN 1992-1-1:2004 + AC 2010

ancotech GmbH – atc-anchor channel	
Intended use Installation parameters of anchor channels	Annex B2

Table 7: Minimum spacing and installation torque of Channel bolts – General⁽¹⁾

Channel				ue T _{Inst,g} ²⁾					
bolt Ø	atc	atc	atc	atc	atc	atc	atc	atc	atc
[mm]	2815	3817	4022	4022P	4025	4930	5030	5030P	5234
6	3								
8	8								
10	13	15	15	15	15	15	15	15	15
12	15	25	25	25	25	25	25	25	25
16	·	40	45	45	45	60	60	60	60
20						75	75	75	120

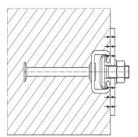
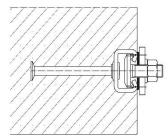

- 1) Acc. to Annex B3, Fig 1
- 2) T_{inst,g} shall not be exceeded

Table 8: Minimum spacing and installation torque of Channel bolts – Steel-Steel-Contact⁽¹⁾

Channel	Installation torque T _{Inst,s} ²⁾									
bolt Ø	4.6									
[mm]		[Nm]								
6	3	8								
8	8	8	15	20						
10	15	15	30	40						
12	25	25	50	70						
16	65	60	130	180						
20	130	120	250	360						

- 1) Acc. to Annex B3, Fig 2
- 2) T_{inst,s} shall not be exceeded

Fig. 1



General:

The fixture is in contact with the channel profile and the concrete surface.

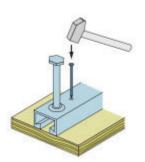
The installation torques acc. Annex B5, Table 8 shall be applied and shall not be exceeded.

Fig. 2

Steel – Steel Contact:

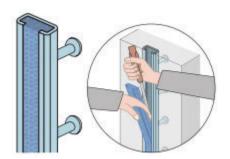
The fixture is fastened to the anchor channel by suitable steel part (e.g. washer). Fixture is in contact with the channel profile only.

The installation torques Annex B5, Table 9 shall be applied and shall not be exceeded.


ancotech GmbH - atc-anchor channel

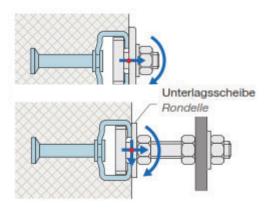
Intended use

Installation parameters of channel bolts, positions of the fixture


Annex B3

1. Fixing anchor channel

The ATC-anchor channel is fixed with nails attached to the wooden formwork. For fixing the ATC-anchor channels on a steel formwork, the Hammer-head channel bolts with a nut can be used.


2. Removing of the channel infill

To prevent concrete from penetrating the ATC anchor channels, all profiles are supplied with a foam filling.

The filling can be easily removed with a suitable tool after concreting.

3. Fastening the channel bolt to the ATC-anchor channel

a) Setting torques (General)

The hammer-head channel bolt is inserted into the rail and turned 90°. The channel bolt head must rest on both lips of the anchor channel. The screw is then

b) Installation torques (Steel-Steel Contact)

When installing at a distance, a washer must always be installed to absorb the tensile and transverse forces.

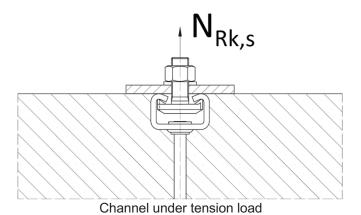
ancotech GmbH - atc-anchor channel

Tal	Table 9: Characteristic resistances under tension load – Steel failure channel										
A	Inchor	Steel failure	anchor	Connection and	nor/channel	Local flexure of channel lips 2)					
С	hannel	N _{Rk,s,a} (kN)	γ _{Ms} 1)	N _{Rk,s,c} (kN)	$N_{Rk,s,c}$ (kN) $\gamma_{Ms,c}$ 1)		N ⁰ Rk,s,l (kN)	γ _{Ms,I} 1)			
	atc2815	12.2		10.0		56	10.0				
	atc3817	21.6		20.4		76	20.4				
	atc4022	24.6		15.1		80	15.1				
_	atc4022P	38.5		26.7		80	26.7]			
Steel	atc4025	21.6		22.2		80	22.2				
^တ	atc4930	33.8		33.5		98	33.5]			
	atc5030	38.5		33.4		100	33.4				
	atc5030P	55.4		32.2		100	32.2]			
	atc5234	55.4	1.80	40.0	1.80	104	40.0	1.80			
	atc2815	16.7	1.00	12.3	1.00	56	12.3] 1.00			
_	atc3817	29.7		32.6		76	32.6]			
Steel	atc4022	29.7		29.4		80	29.4				
11	atc4022P	46.3		33.7		80	33.7				
 	atc4025	29.7		31.0		80	31.0				
Stainles	atc4930	46.3		43.6		98	43.6				
Sta	atc5030	46.3		49.2		100	49.2]			
	atc5030P	66.7		47.2		100	47.2				
	atc5234	66.7		72.5		104	72.5]			

¹⁾ In absence of other regulations

Table 10: Characteristic flexure resistance of channel under tension load

	Ancho	Stainless Steel	Steel				
			atc2815	324	317		
			atc3817	593	580		
Charactaristic			atc4022	1580	1406		
Characteristic flexure	SUC	[Nm]	atc4022P	1580	1406		
resistance of	$M_{Rk,s,flex}$		atc4025	1071	1099		
the channel			atc4930	1708	1673		
the charmer			atc5030	3184	2830		
			atc5030P	3184	2830		
			atc5234	3373	3373		
Partial safety factor	$\gamma_{Ms,flex^1)}$ 1.15						


¹⁾ In absence of other regulations

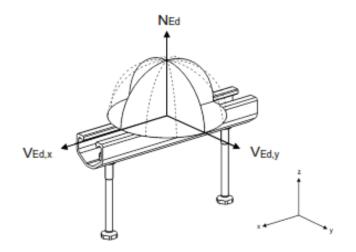
ancotech GmbH – atc-anchor channel	
Performance Characteristic resistances under tension load – Steel failure channel	Annex C1

Table 11: Characteristic resistance under tension load – Steel failure channel bolts

	Anchor Channel					A4-70	8.8
			M6	8.0	10.0	14.0	16.0
		h-2015	M8	14.6	18.3	25.6	29.2
		hs2815	M10	16.2	29.0	40.6	46.4
			M12	18.1	35.7	49.9	51.2
			M10	M10 16.2 29.0 40.6 M12 18.1 35.7 49.9 M10 23.2 29.0 40.6 M12 33.7 42.1 59.0 M16 45.9 101.5 101.9 M10 23.2 29.0 40.6 M12 33.7 42.1 59.0		46.4	
Charactariatia		hs3817	M12	33.7	42.1	59.0	67.4
Characteristic resistance	$N_{Rk,s}$		M16	45.9	101.5	101.9	68.8
resistance	[kN]	hs4022	M10	23.2	29.0	40.6	46.4
			M12	33.7	42.1	59.0	67.4
			M16	43.1	99.6	89.2	80.6
			M10	23.2	29.0	40.6	46.4
		hoE020	M12	33.7	42.1	59.0	67.4
		hs5030	M16	62.8	78.5	109.9	125.6
			M20	75.8	137.3	150.0	132.7
Partial safety factor	γ _{Ms} 1)		[-]	2.00	2.86	1.87	1.50

¹⁾ In absence of other regulations

ancotech	GmbH -	– atc-anch	nor c	hannel
----------	--------	------------	-------	--------


Anchor channel		atc 2815	atc 3817	atc 4022	atc 4022P	atc 4025	atc 4930	atc 5030	atc 5030P	atc 5234		
Pull out failure												
Charac. resista concrete C20/2		$N_{Rk,p}$	[kNI]	12.7	22.6	22.6	22.6	35.3	22.6	35.3	50.9	50.9
Charac. resistar		I VRK,p	[KIN]	17.8	31.7	31.7	31.7	49.5	31.7	49.5	71.3	71.3
	C25/30							1.25				
	C30/37							1.50				
	C35/45							1.75				
Increasing	C40/50							2.00				
factor of N _{Rk,p}	C45/55	Ψο	Ψ _c [-]		2.25							
	C50/60	-		2.50								
	C55/67			2.75								
	≥ C60/75							3.00				
Partial safety fa	ctor	γ _{Mp} =	γ _{Mc} ¹⁾					1.50				
Concrete cone	failure											
Product	Cracked concrete	k _c	r,N					4.5				
factor	Uncracked concrete	k _{uc}	r,N					6.3				
Partial safety fa	ctor	γм	1)	1.50								
Concrete split	ting failure											
Characteristic edge distance		C _{cr,sp}		144	235.5	250.5	271.5	259.5	291	291	318	474
Characteristic spacing		S _{cr,sp}	[mm]	96	157	167	181	173	194	194	212	316
Partial safety fa	ctor	γ _{Msp} =	γ _{Mc} 1)	1.50								
1) In absence	1) In absence of other national regulations											

ancotech GmbH – atc-anchor channel	
Performance Characteristic resistances under tension load – Concrete failure	Annex C3

Table 13: Characteristic resistances under shear load

A	Anchor	Steel failure	anchor	Connection and	nor/channel	Local flexure of channel lips			
С	hannel	V _{Rk,s,a,x} (kN)	γ _{Ms} 1)	V _{Rk,s,c} (kN)	γ _{Ms,c} 1)	sı,v (mm)	V ⁰ Rk,s,l,y (kN)	γ _{Ms,I} 1)	
	atc2815	7.3		6.0		56	16.0		
	atc3817	13.0		12.2		76	27.1]	
	atc4022	14.8		9.0		80	46.2		
_	atc4022P	14.8		16.0		80	40.5		
Steel	atc4025	20.3		13.3		80	43.1		
၂	atc4930	13.0		20.1		98	50.9		
	atc5030	23.1		20.0		100	73.8		
	atc5030P	33.3		19.3		100	78.7		
	atc5234	33.3	1.50	24.0	1.80	104	90.5	1.80	
	atc2815	10.0	1.50	7.3	1.00	56	20.8	1.00	
	atc3817	17.8		19.5		76	29.0]	
Steel	atc4022	17.8		17.6		80	58.5		
	atc4022P	17.8		20.2		80	44.0		
SSE	atc4025	27.8		18.6		80	50.3		
Stainles	atc4930	17.8		26.1		98	79.0		
Sta	atc5030	27.8		29.5		100	92.2		
	atc5030P	40.0		28.3		100	65.5		
	atc5234	40.0		43.5		104	76.8		

1) In absence of other regulations

Tension load:

z-direction (in direction of anchor)

Shear load:

y-direction (perpendicular to longitudinal axis of channel)

Shear load:

x-direction (in longitudinal channel axis)

ancotech GmbH – atc-anchor channel	
Performance Characteristic resistances under shear load – Steel failure channel bolts	Annex C5

Table 15: Characteristic resistances under shear load – Steel failure channel bolts

	4.6	A4-50	A4-70	8.8			
			M6	4.8	6.0	8.4	8.0
		h-2015	M8	8.8	11.0	15.4	14.6
		hs2815	M10	13.9	17.4	24.4	23.2
			M12	20.2	25.3	35.4	33.7
			M10	13.9	17.4	24.4	23.2
Ola - u t - u t -		hs3817	M12	20.2	25.3		33.7
Characteristic	$V_{Rk,s}$		M16	37.7	47.1	65.9	62.8
resistance	[kN]	hs4022	M10	13.9	17.4	24.4	23.2
			M12	20.2	25.3	35.4	33.7
			M16	37.7	47.1	65.9	62.8
			M10	13.9	3.9 17.4	24.4	23.2
		h = 5000	M12	20.2 25.3		35.4	33.7
		hs5030	M16	37.7	47.1	65.9	62.8
			M20	58.8	73.5	102.9	98.0
Partial safety factor	γ _{Ms}		[-]	1.67	2.38	1.56	1.25

¹⁾ In absence of other national regulations

Table 16: Characteristic resistances under shear load – Steel failure channel bolts

	Anchor Channel	4.6	A4-50	A4-70	8.8	
		M6	6.5	8.1	11.4	13.0
Ob and at a mintin		M8	14.9	18.7	26.2	29.9
Characteristic	M ⁰ _{Rk,s} [Nm]	M10	29.9	37.3	52.3	59.8
resistance		M12	52.4	65.5	91.6	98.0
		M16	133.2	166.5	233.1	266.4
			259.6	324.5	454.3	519.2
Partial safety factor	$\gamma_{Ms}^{1)}$	[-]	1.67	2.38	1.56	1.25

¹⁾ In absence of other national regulations

 $\begin{aligned} &M^0_{Rk,s} \leq 0,5 \, \cdot \, N^0_{Rk,s,l} \cdot a \\ &M^0_{Rk,s} \leq 0,5 \, \cdot \, N_{Rk,s} \cdot a \end{aligned}$

 $N^0_{Rk,s,l}$ acc. to Annex C1, Table 9 $N_{Rk,s}$ acc. to Annex C2, Table 11 a acc. to Annex C6, Table 17

ancotech GmbH – atc-anchor channel						
Performance						

Annex C5

²⁾ The characteristic flexure acc. to Table 15.2 is limited as follows:

Table 17: Internal lever arm between tension and compression force

Internal lever		hs28	15		hs	s3817		hs4022 hs503 6 M10 M12 M16 M10 M12 M			s 5030	30		
channel bolts	M6	M8	M10	M12	M10	M12	M16	M10	M12	M16	M10	M12	M16	M20
a [mm]	15.6	16.9	18.2	19.6	22.9	24.2	26.2	23.5	24.8	26.8	27.7	29.0	31.0	33.3

Table 18: Characteristic resistances under combined tension and shear load

atc-anchor channels							
k13	Charl	1,0					
k14	Steel	1,0					
k13	Ctainless Ctasl	1,0					
k14	Stainless Steel	1,0					

- 1) k₁₃ can be taken as 2,0 if V_{Rd,s,I} limited to N_{Rd,s,I}
- 2) k_{14} can be taken as 2,0 if max ($V_{Rd,s,a}$; $V_{Rd,s,c}$) are limited to min ($N_{Rd,s,a}$; $N_{Rd,s,c}$)

ancotech GmbH – atc-anchor channel	
Performance Characteristic resistances under combined tension and shear load – Steel failure channel bolts	Annex C6